3D Graphics

Introduction
What is computer graphics

Modeling -> how do we represent stuff

Rendering -> how do we print stuff on the screen

Animation -> how do we make stuff move
What is computer graphics

Modeling -> how do we represent stuff

Rendering -> how do we print stuff on the screen

Animation -> how do we make stuff move
Rendering: Transforming a **scene** into an **image**
Rendering: Transforming a **scene** into an **image**

Red Autumn Forest
By Robin Tran
What is an image
Images

2D array of pixels

Each Pixel stores a color
Color representation: Red Green and Blue

Representing color on three axis:
Question

Why did we choose red green and blue?

(1 minute alone)

(2 minutes with your neighbors)

(5 minutes with the whole group)
Human vision

Cone cell - > detect color

Rod cell - > detect intensity
Human vision

A type of cone for blue
A type of cone for green
A type of cone for red
Human vision

A type of cone for blue
A type of cone for green
A type of cone for red
Human vision

A type of cone for blue
A type of cone for green
A type of cone for red
Human vision

A type of cone for blue
A type of cone for green
A type of cone for red

Color Photography -> 1926
Cone cell Discovery - > 1956
RGB can represent all colors?

Gamut: the subset of color achievable by a representation

RGB only represent a subset of the visible color

Visible color vs RGB color gamut
Additive Color

We emit light from the screen
So color are added
What is a scene?
Scene

Light Source

3D Objects

Camera
Scene

- Emit the light
- Reflect part of the Light
- Measure the light
Scene : 3D Mesh

Key idea : approximating surfaces using triangles
Scene : 3D Mesh

Key idea : approximating surfaces using triangles
Scene: 3D Mesh

Key idea: approximating surfaces using triangles
Scene : 3D Mesh

Key idea : approximating surfaces using triangles
Question

Why do we use triangles (and not quads, circles or other primitives) ?

(1 minute alone)
(2 minutes with your neighbors)
(5 minutes with the whole group)
Everything is triangles

A quad is two triangle
Everything is triangles

A quad is two triangle
Triangle : Three point make a plane
Triangle : Three point make a plane
Triangle : Barycentric coordinates

Each point in the triangle is a linear composition of the three vertices

\[P = wA + uB + vC \]
Triangles and how to store them
Mesh representation: Triangle soup

Each triangle is stored as a set of three coordinates in the counter-clockwise order.

Example in 2D: one triangle

\{(x_0, y_0), (x_1, y_1), (x_2, y_2)\}
Mesh representation: Triangle soup

Each triangle is stored as a set of three coordinates in the counter clockwise order.

Example in 2D: one triangle

\{x_0, y_0, x_1, y_1, x_2, y_2, x_2, y_2, x_1, y_1, x_3, y_3\}

Triangle 1

Triangle 2

\{x_2, y_2\}

\{x_0, y_0\}

\{x_3, y_3\}

\{x_1, y_1\}
Mesh representation : Indexed Triangle

Each triangle is stored as a set of three coordinates in the counter clockwise order.

Example in 2D: one triangle

Vertices list
{x₀, y₀,
 x₁, y₁,
 x₂, y₂}

Indices list
{0, 1, 2}
Mesh representation : Indexed Triangle

Each triangle is store as a set of three coordinates in the counter clockwise order

Example in 2D : one triangle

Vertices list
{x0,y0,
x1,y1,
x2,y2,
x3,y3}

Indices list
{
0,1,2, -> triangle 1
2,1,3 -> triangle 2
}
Question

In the following triangles estimate the memory consumption of storing them as a soup and as an indexed list:

Infos:
6 triangles,
7 vertices
Camera
Scene: Camera

The camera is our point of view, it has a position in the scene:
Scene : Camera

The camera is our point of view, it has its own frame:

- “Look at” vector
- “Up” vector
- “Right” vector
Scene: Camera

Frustum: the visible part of the scene:

- Near plane
- Far plane
- Aspect ratio
- Field of View