
TP3 Graphic 3D
Rasterizer & Depth buffer

In this part, we aim to implement a rasterizer as seen in the lecture.
First, you need to download the camera.py, projection.py, and graphicPipeline.py.

Then you need to complete the graphicPipeline.py :

import numpy as np

class Fragment:

def __init__(self, x : int, y : int, depth : float):

self.x = x

self.y = y

self.depth = depth

def edgeSide(p, v0, v1) :

pass

#todo

class GraphicPipeline:

def __init__ (self, width, height):

self.width = width

self.height = height

self.depthBuffer = np.ones((height, width))

def VertexShader(self, vertices, data) :

outputVertices = np.zeros_like(vertices)

for i in range(vertices.shape[0]) :

x = vertices[i][0]

y = vertices[i][1]

z = vertices[i][2]

w = 1.0

vec = np.array([[x],[y],[z],[w]])

vec = np.matmul(data['projMatrix'],np.matmul(data['viewMatrix'],vec))



outputVertices[i][0] = vec[0]/vec[3]

outputVertices[i][1] = vec[1]/vec[3]

outputVertices[i][2] = vec[2]/vec[3]

return outputVertices

def Rasterizer(self, v0, v1, v2) :

fragments = []

for j in range(0, self.height) :

for i in range(0, self.width) :

#x = ...

#y = ...

#if inside

#emit a fragment

pass

return fragments

def draw(self, vertices, triangles, data):

newVertices = self.VertexShader(vertices, data)

fragments = []

for t in triangles :

#call the rasterizer the triangle t

pass

for f in fragments:

#todo Process each fragment using the depth buffer

pass

Inside outside test
To do so you should start by completing the edgeSide Function then implement the
inside-outside test in the rasterizer and emit a fragment when it is needed. (For now, use 0 for
the depth of the fragments )

Then as a first test, fill the depth buffer with fragment z regardless of the current depth buffer.



To test your code you can use the following code :
import numpy as np

from graphicPipeline import GraphicPipeline

width = 1280

height = 720

pipeline = GraphicPipeline(width,height)

from camera import Camera

position = np.array([1.1,1.1,1.1])

lookAt = np.array([-0.577,-0.577,-0.577])

up = np.array([0.33333333, 0.33333333, -0.66666667])

right = np.array([-0.57735027, 0.57735027, 0.])

cam = Camera(position, lookAt, up, right)

from projection import Projection

nearPlane = 0.1

farPlane = 10.0

fov = 1.91986

aspectRatio = width/height

proj = Projection(nearPlane ,farPlane,fov, aspectRatio)

vertices = np.array([

[0.0,0.0,0.0], #0

[1.0,0.0,0.0], #1

[0.0,1.0,0.0], #2

[1.0,1.0,0.0], #3

[0.0,0.0,1.0], #4

[1.0,0.0,1.0], #5

[0.0,1.0,1.0], #6

[1.0,1.0,1.0], #7

])

triangles = np.array([

[1,0,2],

[3,1,2],

[4,5,6],

[5,7,6],

[0,1,4],



[4,1,5],

[2,6,3],

[3,6,7],

[0,6,2],

[4,6,0],

[1,3,7],

[5,1,7]

], dtype=int)

data = dict([

('viewMatrix',cam.getMatrix()),

('projMatrix',proj.getMatrix())

])

pipeline.draw(vertices, triangles, data)

import matplotlib.pyplot as plt

imgplot = plt.imshow(pipeline.depthBuffer, cmap='gray')

plt.show()

It should give you the following image :
(As we didn’t use any optimization the operation might take some time to complete)



Depth buffering
1) Compute the depth of each fragment in the Rasterizer function
2) In the draw function, modify the loop over fragments to use the depth testing
3) In the main file replace the line:
imgplot = plt.imshow(pipeline.depthBuffer, cmap='gray')

By:
imgplot = plt.imshow(1/pipeline.depthBuffer, cmap='gray')

You should obtain the following image :

Bonus Optimisation :
Implement The Axis Aligned bounding box optimization to reduce computation times.
If correctly implemented it should significantly decrease computation times
Measure the rendering time without the optimization and with it.


